CHROM. 22 599

Note

Sorption of primary n-alkanols on Tenax

JIŘÍ VEJROSTA*, MILENA MIKEŠOVÁ and PAVEL FILIP

Institute of Analytical Chemistry, Czechoslovak Academy of Sciences, Kounicova 82, 611 42 Brno (Czechoslovakia)

(First received January 10th, 1990; revised manuscript received May 28th, 1990)

In a previous paper [1], an empirically modified Langmuir isotherm equation [2]:

$$\log V_{\rm g} = a + b/T + c \log (1 + ec_{\rm s}) + (d/T) \log (1 + ec_{\rm s}) \tag{1}$$

where $V_{\rm g}$ (ml/g) is the solute specific retention volume, $c_{\rm s}$ (mol/g) is the solute sorbent-phase concentration, T is the absolute temperature and a, b, c, d and e are adjustable parameters, was successfully used for the description of n-alkane sorption in an n-alkane-nitrogen-Tenax system. The assumption of a linear dependence of the thermodynamic functions of sorption on the number of methylene groups in the solute molecule [3] leads to

$$\log V_{g} = c_{1} + c_{2}n + c_{3}/T + c_{4}n/T + (c_{5} + c_{6}n)Y + (c_{7} + c_{8}n)Y/T$$
 (2)

where n is the number of methylene groups in the n-alkane chain, which describes the sorption properties of the whole homologous series. The function Y reflects the extent of the deviation from linearity of the sorption isotherm:

$$Y = \log[1 + (c_9 + c_{10}n)c_5] \tag{3}$$

An average relative deviation of 8.5% was found between the calculated and the experimental values of the specific retention volume (C_5 – C_8 n-alkanes in the temperature range 19.9–50.3°C and at gas-phase concentrations of 6 · 10^{-12} –7.5 · 10^{-7} mol/ml) with use of eqn. 2. This was partly due to the systematic deviations at low gas-phase concentration [1]. When the individual sorption isotherm are correlated by eqn. 1, the values of the average relative deviations decrease to 3–4%.

The aim of this work was to demonstrate the correlation capabilities of eqns. 1 and 2 for the description of the sorption isotherms of the homologous series of primary *n*-alkanols in mixture with nitrogen on Tenax.

EXPERIMENTAL

The preparation of standard gaseous mixtures, the measurements and the

NOTES 235

calculation of the partition coefficients were described previously [4,5]. The purity of the *n*-alkanols (C_2 – C_5) (Fluka, Buchs, Switzerland) was better than 99.5% and they were used without further purification. *n*-Alkanol partition coefficients (208 values) were measured at temperatures in the range 13.5–41.7°C and at gas-phase concentrations of $2.1 \cdot 10^{-12}$ – $2.7 \cdot 10^{-7}$ mol/ml.

RESULTS AND DISCUSSION

First, eqn. 1 was used to correlate the sets of sorption isotherms of the individual primary *n*-alkanols. The results of the optimization are summarized in Table I.

The values of the average deviations increase with increasing carbon number and the average value of 4.65% corresponds with the estimated experimental error of 4-5%. The increased values in comparison with those for non-polar compounds (benzene, *n*-alkanes) are obviously connected with the experimental method used. As already found with acetone [6], the experimental reproducibility of the data is worse for polar than for non-polar compounds.

The linear dependence of the parameters of eqn. 1 on the number of methylene groups is the basic condition for successful application of the additivity principle³. Table I shows a very good linear dependence of the parameters a, b and d on the methylene number and the lack of a dependence for c and e. In spite of this, the whole homologous series of n-alkanols was correlated by eqn. 2 and the resulting parameters are given in Table II. An average relative deviation of 18.3% was found, double that for n-alkanes, as expected. The results are illustrated graphically in Fig. 1 for n-propanol. Marquardt's algorithm was used for the calculation of non-linear parameters [7].

CONCLUSION

The modified Langmuir isotherm equation (eqn. 1) was successfully applied for the description of sorption isotherms of primary n-alkanols. The description of the whole homologous series of n-alkanols by eqn. 2, which follows from the application of the additivity principle, results in an average relative deviation of ca. 18%. This is still

TABLE I
SUMMARY OF OPTIMIZED PARAMETERS OF EQN. 1 FOR PRIMARY n-ALKANOLS

n is the number of methylene groups between two carbon atoms in the molecule of primary n-alkanols $CH_3(CH_2)_nCH_2OH$; a, b, c, d and e are the parameters in eqn. 1; $\Delta_i(\%) = 100V_{g,calc} - V_{g,exp}/V_{g,exp}$; the average relative error is defined as $\bar{\Delta}_i$ (%) = $\sum \Delta_i/i$, where i is the number of experimental points.

n	a	ь	c	d	e	i	$\bar{\Delta}_i$ (%)
0	-6.5859	2850.1	2.1225	- 799.90	24986.6	56	2.69
1	-7.0647	3249.89	1.8636	-1000.02	20012.7	50	3.28
?	-7.4331	3600.13	1.9747	-1199.95	20965.5	47	5.17
3	-8.0081	3945.26	1.6426	-1397.40	20020.0	55	7.44

TABLE II SUMMARY OF OPTIMIZED PARAMETERS OF EQNS. 2 AND 3

Parameter	Value	Parameter	Value	
c_1	-6.3427	C ₆	-0.2069	
c_2	-0.5703	c_7	-798.95	
c_3	2795.27	c ₈	-187.18	
C4	395.33	c_9	23501.06	
c ₅	2.1276	$c_{10}^{'}$	-1390.41	

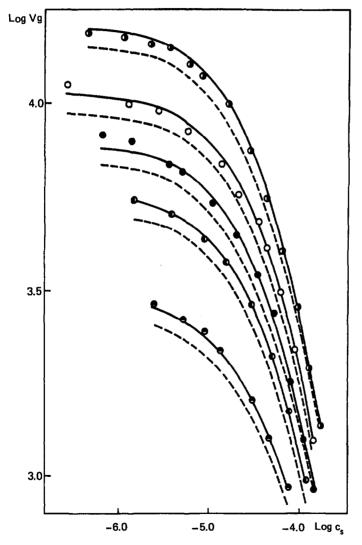


Fig. 1. Relationship between log $V_{\rm g}$ and log $c_{\rm s}$ for n-propanol on Tenax calculated with eqn. 1 (solid lines) and with eqns. 2 and 3 (dashed lines), and experimental points ($\Phi = 15.2$; $\Theta = 23.5$; $\Phi = 23.5$; $\Phi = 35.0^{\circ}$ C).

NOTES 237

acceptable for the calculation of retention characteristics for trace analysis utilizing preconcentration on Tenax.

REFERENCES

- 1 J. Vejrosta, M. Mikešová and J. Drozd, J. Chromatogr., 464 (1989) 394.
- 2 J. Vejrosta, M. Mikešová, A. Ansorgová and J. Drozd, J. Chromatogr., 447 (1988) 170.
- 3 J. Novák, J. Vejrosta, M. Roth and J. Janák, J. Chromatogr., 199 (1980) 209.
- 4 J. Vejrosta, M. Roth and J. Novák, J. Chromatogr., 217 (1981) 167.
- 5 J. Vejrosta and J. Novák, J. Chromatogr., 175 (1979) 261.
- 6 J. Vejrosta, M. Roth and J. Novák, J. Chromatogr., 219 (1981) 37.
- 7 D. W. Marquardt, J. Soc. Ind. Appl. Math., 11 (1963) 431.